
1149

0022-4715/03/0600-1149/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 111, Nos. 5/6, June 2003 (© 2003)

The Asymmetric Avalanche Process

A. M. Povolotsky,1, 2 V. B. Priezzhev,2 and Chin-Kun Hu1

1 Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan; e-mail: huck@
phys.sinica.edu.tw

2 Bogoliubov Laboratory of Theoretical Physics, J.I.N.R., Dubna 141980, Russia; e-mail:
{povam;priezzvb}@thsun1.jinr.ru

Received September 25, 2002; accepted December 6, 2002

An asymmetric stochastic process describing the avalanche dynamics on a ring
is proposed. A general kinetic equation which incorporates the exclusion and
avalanche processes is considered. The Bethe ansatz method is used to calculate
the generating function for the total distance covered by all particles. It gives the
average velocity of particles which exhibits a phase transition from an inter-
mittent to continuous flow. We calculated also higher cumulants and the large
deviation function for the particle flow. The latter has the universal form
obtained earlier for the asymmetric exclusion process and conjectured to be
common for all models of the Kardar–Parisi–Zhang universality class.
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sandpile model.

1. INTRODUCTION

Interacting particle systems with stochastic dynamics (1) and particularly the
one-dimensional asymmetric exclusion process (ASEP) have been intensi-
vely studied, (2–4) due to connections to growth processes, (5) traffic flows, (6)

the noisy Burgers equation (7) and the Kardar–Parisi–Zhang (KPZ) equa-
tion. (8) Being one of the simplest examples of integrable non-equilibrium
systems, the ASEP allows calculation of some dynamical properties, (9, 10)

a large deviation function, (11) and conditional probabilities. (12)

In a standard formulation, (13) particles move in such a way that there
is always at most one particle per site on the one-dimensional lattice. Every
particle hops to its right or left with biased probabilities provided the target
site is empty. Otherwise, it does not move. Using a traffic terminology, this
kind of interaction between particles can be called a ‘‘soft braking.’’



Another kind of interaction is an ‘‘aggressive braking,’’ (14, 15) when a
particle pushes the particle in front of it and then stops. The displaced par-
ticle shifts the next particle in front, if any, and so on. As a result, a chain
of adjacent particles is shifted by one lattice space left or right at the same
moment of time. Despite apparent non-locality of dynamics, the Bethe
ansatz method is still applicable and the resulting Bethe equations are
solvable parallel to the ASEP case. Further generalizations of the ASEP
have been proposed. (16, 17) In every case, however, an elementary motion of
a particle produces a deterministic reconstruction (local or non-local) of the
preceding lattice state.

The beginning of intensive study of the ASEP nearly coincides with a
burst of interest to the threshold dynamics and avalanche processes.
Appeared originally in the sandpile model of self-organized criticality, (18)

the avalanche processes have been shown to be related to many different
phenomena ranging from an interface depinning to earthquakes. (19)

As an example of the threshold dynamics one can again consider
ASEP-like stochastic model at the one dimensional lattice. In this case,
however, we admit multiple occupation of a lattice site by particles. Like in
the ASEP, each particle hops to its right or left. If the number of particles
n at given site exceeds some critical value nc, the site is unstable and must
relax immediately. The relaxation consists in spilling of m G n particles
from the given site to neighboring sites by a fixed rule. If the neighboring
sites become unstable, they relax as well. Thus, an avalanche of relaxations
spreads over the lattice. The time interval between beginning and ending of
every avalanche is negligible in comparison with characteristic hopping
time of a single particle.

Comparing to the ASEP with the aggressive braking, a fundamental
difference appears, when the spilling rule is stochastic. (20) In this case, the
structure of avalanche becomes complicated. Unstable states may appear
randomly even if an underlying structure of the lattice state is regular
before an avalanche starts. Then, the distance at which avalanches propa-
gate and the total mass of particles involved in an avalanche are random
values described by probabilistic distributions. The configurations of par-
ticles in the lattice states before and after an avalanche may differ consid-
erably, and the latter results from the first by a series of stochastic spillings.

Another peculiarity of avalanche dynamics is a specific transition into
a totally unstable state, when the density of particles exceeds some critical
value and an avalanche never stops in the thermodynamic limit of infinitely
large lattice. (21) This transition corresponds to change of the time scale
characterizing the system, which can be defined for example as a ratio of
system size to average velocity of particles. While for low density, the slow
diffusion processes prevail, the fast avalanches dominate above the transition
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point. The existing of two time scales was shown to be responsible for reach-
ing of the self-organized critical state in systems with avalanche dynamics.

The aim of this paper is to give a mathematical description of one kind
of avalanche processes, the one-dimensional asymmetric avalanche process
(ASAP). (22) The ASAP is a partially asymmetric diffusion process with the
totally asymmetric avalanche propagation. The similar directed one-dimen-
sional stochastic avalanches have been considered in ref. 23, where the
asymptotic of avalanche distributions in the self-organized critical state
have been calculated exactly for the open lattice in the thermodynamic
limit. Instead, we study the ASAP on a ring with a fixed number of par-
ticles. In this case, the critical value of the density exists, depending on
spilling probabilities, which corresponds to the transition from the inter-
mittent to continuous flow when the fast avalanche dynamics becomes
dominating. In this paper, we concentrate on dynamical properties of the
ASAP below this point.

One of the reasons for the intensive interest to the ASEP is that it
being exactly solvable gives a discrete version of the Kardar–Parisi–Zhang
(KPZ) equation. (10) In the scaling limit, one can get analytically the uni-
versal quantities like critical exponents and scaling functions characterizing
a vast class of nonequilibrium phenomena belonging to the KPZ univer-
sality class. On the other hand, the universal scaling properties of ava-
lanche dynamics are much less investigated. There are very few successful
attempts, (24–28) to find analytical arguments allowing one to relate the
avalanche-like processes with one of well-defined universality classes such
as the KPZ, Edwards–Wilkinson or directed percolation. (29)

In the present work, we show that the generating function of the total
distance Yt travelled by particles in the ASAP is given in the scaling limit by
the expression

lim
t Q .

ln OecYtP

t
’ cK1+K2G(K3c), (1.1)

where G(x) does not depend on parameters of the model and has the
following parametric form

G(x)= − C
.

s=1
(−C) s s−5/2 (1.2)

x= C
.

s=1
(−C) s s−3/2, (1.3)

and K1, K2, and K3 are model dependent parameters. This universal form
of function G(x) was claimed to be the feature of the KPZ universality
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class. (30, 31) It also determines the universal form of the large deviation
function characterizing the deviations of the integrated particle current
from its average value. These results give an evidence that the ASAP shares
the KPZ universality class with the ASEP despite the significant difference
in their dynamics.

The article is organized as follows. In Section 2, we consider the
master equation for a general stochastic model which leads to the ASEP
and ASAP in particular cases. In Section 3, we derive the Bethe ansatz
equations for the generating function of the total displacement of all par-
ticles. A particular case of the ASAP is considered in Section 4 where the
ASAP becomes identical to a drop-push version of the ASEP. The general
case of the ASAP is considered in Section 5. Using the method developed
in refs. 32 and 33, we analyse the integral equation corresponding to the
density of roots of the Bethe equations and derive the generating function
for the total displacement of particles. From it we obtain the expression for
the cumulants of total distance travelled by particles, like mean velocity
and variance, its large deviation function, and demonstrate that the ASAP
belongs to the KPZ universality class.3

3 A brief summary of the results has been presented at ‘‘StatPhys-Taiwan 2002,’’ during May
27–June 1, see ref. 34.

2. THE MASTER EQUATION

In this section we are going to obtain the master equation describing
ASAP, which is defined as follows. Consider the system of p particles on a
ring of N sites as shown in Fig. 1. Particles jump left or right with proba-
bilities Ldt or Rdt, respectively, for infinitesimal time dt independently of
each other. When a particle comes to already occupied site after the
hopping either from left with the rate R or from right with the rate L, an
avalanche starts. It develops step by step according to the following
dynamical rules.

If, at some step of the avalanche, n(n=2, 3,...) particles are at site x,
then

with probability mn, n particles go to the site x+1;
with probability 1 − mn, n − 1 particles go to the site x+1 and one par-

ticle stays at the current site x.

We imply that an avalanche takes infinitesimal time to end, i.e., from
the point of view of Poissonian processes it plays a role of interaction
resulting in the transition between configurations with single particle
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Ldt

µn

1-µn

 n

n-1
Rdt {

Fig. 1. The asymmetric avalanche process.

occupation. The totally asymmetric case discussed in ref. 22 corresponds to
particular choice of the rates, L=0, R=1. In the case of the ASEP a par-
ticle step to already occupied site is forbidden. However, it will be shown
below to be closely connected with the ASAP. To make the presentation
more systematic we start from the system of free particles then going to
ASEP and ASAP dynamics.

The state C of the system at time t is characterized by the probability
Pt(C) satisfying the master equation

“tPt(C)= C
{CŒ}

M(C, C −) Pt(C −) (2.1)

The off-diagonal elements M(C, C −) of the matrix M are rates of transi-
tions from configurations C − to C and therefore are always positive. The
diagonal elements M(C, C) that give the total rate of the transition from
the state C to all other configurations, enter the matrix M with a minus
sign. Conservation of probability requires the identity

M(C, C)=− C
{CŒ}

M(C −, C) (2.2)

Let us return to particles at the lattice. Consider noninteracting par-
ticles jumping left or right with probabilities Ldt or Rdt, respectively, for
infinitesimal time dt. The probability Pt(x1,..., xp) for particles to occupy
sites x1,..., xp obeys the master equation

“tPt(x1,..., xp)=−pPt(x1,..., xp)+L C
p

i=1
Pt(x1,..., xi+1,..., xp)

+R C
p

i=1
Pt(x1,..., xi − 1,..., xp) (2.3)

if xi+1 − xi > 1.We impose the condition L+R=1 by an appropriate choice
of time scale.

In the ASEP, the form of the master equation should be modified
if configuration C contains pairs of neighboring occupied sites. If there
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are only two neighboring sites, x, x+1, occupied by particles, the master
equation differs from Eq. (2.3) by the extra term LPt(..., x+1, x+1,...)+
RPt(..., x, x,...) − Pt(..., x, x+1,...). If there are more than one pair, one
must substract the other unwanted terms from the Eq. (2.3) for every pair
to obtain equations taking into account the exclusion rules. Instead, one
can reduce the consideration to the free master equation only, if one
equates the appeared extra terms to zero putting the boundary conditions
for the physical domain x1 < x2 < · · · < xp:

LPt(..., x+1, x+1,...)+RPt(..., x, x,...) − Pt(..., x, x+1,...)=0. (2.4)

The terms like Pt(..., x, x,...) corresponding to multiple occupation of sites
do not contribute to the dynamics due to the exclusion rule. Therefore,
they can be considered as auxiliary non-physical terms and redefined by the
boundary conditions so that all extra terms in free equation vanish giving
the correct equation for the system with interaction.

Consider now more general condition of type Eq. (2.4) with the coef-
ficients a and b which do not coincide necessarily with the rates L and R in
Eq. (2.3) and will be defined later,

aPt(..., x, x,...)+bPt(..., x+1, x+1,...) − Pt(..., x, x+1,...)=0 (2.5)

To provide the probabilistic meaning of the Eq. (2.3) together with
Eq. (2.5), some constraints should be imposed on a and b. In this case,
we still use the exclusion rule that allows one to use the terms of type
Pt(..., x, x,...) as auxiliary ones which should be redefined in appropriate
way. The condition Eq. (2.5) itself does not eliminate the contribution of
extra terms yet. Nevertheless, we can try to use this condition to replace the
unwanted terms by terms consisting of allowed configurations only. To this
end, we can exploit the fact that two unphysical terms in Eq. (2.5) are of
similar structure and consider this relation as a recursion:

Pt(..., x, x,...)=
1
a

Pt(..., x, x+1,...) −
b

a
Pt(..., x+1, x+1,...), (2.6)

To proceed, it is convenient to consider the two-particle case separately.

2.1. The Case of Two Particles

If there are only two particles at the lattice, the recursion Eq. (2.6) can
be immediately solved in terms of allowed configurations only:

Pt(x, x)=
1
b

C
.

n=0

1 −
a

b
2n

Pt(x − n − 1, x − n) (2.7)
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where, due to periodic boundary conditions, all coordinates are integers
modulo N. Substituting Eq. (2.7) into the Eq. (2.3) rewritten for the two
particle case under the condition x2=x1+1, we get

“tPt(x, x+1)=LPt(x, x+2)+RPt(x − 1, x+1) − Pt(x, x+1)

+1L
b

− 12 Pt(x, x+1)

+
L
b
1m+

R
L
2 C

.

n=1
mn − 1Pt(x − n, x − n+1) (2.8)

where m=−a/b. To give a probabilistic meaning to the transition rates,
the terms corresponding to the processes when the system leaves the con-
figuration (x, x+1) should be non-positive and those for coming into
(x, x+1) from other configurations should be non-negative. To keep
probabilities positive, we have to impose the condition that either m is
positive or m=−R/L, when the term containing the infinite sum vanishes.
In addition, conservation of probability, Eq. (2.2), requires

a+b=1. (2.9)

Then, the condition m=−R/L implies a=R, b=L, i.e., the ordinary
ASEP. In the case m > 0, we have

a=−m/(1 − m), b=1/(1 − m) (2.10)

and can rewrite Eq. (2.8) in the form

“tPt(x, x+1)=LPt(x, x+2)+RPt(x − 1, x+1) − Pt(x, x+1)

+(R+Lm)(−Pt(x, x+1)

+(1 − m) C
.

n=1
mn − 1Pt(x − n, x − n+1) (2.11)

In terms of m, the boundary condition, Eq. (2.6) reads

Pt(x, x)=(1 − m) Pt(x − 1, x)+mPt(x − 1, x − 1) (2.12)

The expression Eq. (2.11) shows that in addition to the Poissonian hopping
given by the original kinetic equation, new terms appear in the equation
which correspond to transitions to the configuration C=(x, x+1) from
the configurations {C −}={(x − n, x − n+1), n=1, 2,...}. The rates of the
transitions are (R+Lm)(1 − m) mn − 1. In the case of two particles, these rates
determine the avalanche dynamics defined above.
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To show the relation between ASEP and ASAP before going into
details of the solution, let us consider the moment when an avalanche
starts. This happens if either the left particle of two neighboring ones
moves right with the rate R or the right particle moves to the left with the
rate L and then two particles together make at least one step together with
probability m. Then an avalanche starts with the rate (R+Lm). This
expression indeed enters those parts of kinetic equation, which correspond
to the avalanche dynamics. Thus, the rate of beginning of an avalanche
becomes zero when m=−R/L, and only exclusion dynamics remains.
Therefore, we may treat ASEP as an analytical continuation of ASAP with
a parameter m taking a special negative value.

2.2. Many Particle Processes

One can expect that the n-particle interactions imposes n new con-
strains on the master equation Eq. (2.3). However, in this section we will
show that under certain constraint on toppling probabilities mn no new
boundary conditions appear and Eq. (2.12) is sufficient to take into
account the interaction of arbitrary number of particles.

To generalize the boundary condition, Eq. (2.12), for the description
of many particle dynamics defined above one should express an unstable
configuration via configurations appeared at the previous steps of an
avalanche. The form of these conditions depends on the fact whether the
site x − 1 is occupied or not:

Pt(..., x − 1, x,..., xz
n − 1

,...)=(1 − mn) Pt(..., x − 1,..., x − 1z
n

,...)

+(1 − mn − 1) Pt(..., x − 1,..., x − 1z
n − 1

, x,...) (2.13)

if the site x − 1 is occupied, and

Pt(..., x,..., xz
n

,...)=mnPt(..., x − 1,..., x − 1z
n

,...)

+mn − 1Pt(..., x − 1,..., x − 1z
n − 1

, x,...) (2.14)

if x − 1 is empty.
Like the two-particle boundary condition, Eq. (2.12), the many-par-

ticle conditions, Eqs. (2.13) and (2.14), should be applied recursively.
Applying this recursion step by step to infinity, we generate an infinite
series that consist of the transition probabilities between stable configura-
tions only.
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On the other hand, one may treat the term Pt(..., x,..., xz
n

,...) formally

applying the two-particle boundary condition Eq. (2.12), reducing sequen-
tially the number of particles in unstable sites. As a result, we obtain

Pt(..., x,..., xz
n

,...)=mnPt(..., x − 1,..., x − 1z
n

,...)

+(1 − mn) Pt(..., x − 1,..., x − 1z
n − 1

, x,...) (2.15)

Due to recursion, parameters mn are expressed through the only parameter m:

m2=m, m3=(1 − m) m, mn=(1 − m) mn − 1+mmn − 2, n > 3 (2.16)

or

mn=m
1 − (−m)n − 1

1+m
. (2.17)

Generally, Eq. (2.15) and Eqs. (2.13) and (2.14) do not coincide. However,
the final series entering the kinetic equation which result from the sequen-
tial use of either latter or two former of them will be the same, provided
that the transition probabilities mn from Eqs. (2.13) and (2.14) governing
the avalanche dynamics satisfy Eqs. (2.17) and (2.16).

Indeed, every term of resulting series represents a finite avalanche. It
contains the product of terms mn and (1 − mn) coming from the successive
use of the recurrent relations, Eqs. (2.13), (2.14) or Eq. (2.15). The first
term of the r.h.s. of Eq. (2.13) increases the number of particles at the
unstable site by 1 in comparison with the l.h.s. The second term of the
r.h.s. of Eq. (2.14) decreases the number of particles by 1. Obviously, in
every finite avalanche, the numbers of decreasing and increasing events are
equal. Therefore, the coefficients (1 − mn) from Eq. (2.13) and mn − 1 from
Eq. (2.14) always enter the product corresponding to the avalanche in pairs
and interchanging their places do not affect the structure of the final series.
On the other hand, the interchanging mn − 1 and (1 − mn) between Eqs. (2.13)
and (2.14) leads to Eq. (2.15) obtained from Eq. (2.12).

Thus, we have shown that the two-particle boundary condition,
Eq. (2.12), is sufficient for obtaining the kinetic equation for many particle
avalanche process governed by the above dynamical rules. In the Bethe
ansatz formalism, a similar procedure is known as the two-particle reduci-
bility (38) and provides integrability of a system.
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3. THE BETHE ANSATZ FOR GENERATING FUNCTION

Consider the generating function of the total path Y travelled by all
particles between time 0 and t provided that the system is in configuration
C at time t

Ft(C)= C
.

Y=−.

Pt(C, Y) ecY, (3.1)

where Pt(C, Y) is the joint probability that the system is in configuration C
and the total distance is Y to the time t. The equation for the generating
function and a boundary condition can be obtained from the master equa-
tion Eq. (2.3) and the boundary condition for the probability Eq. (2.12) by
multiplying by ec(e−c) every term corresponding to increasing (decreasing)
distance Y by 1.

“tFt(x1,..., xp)=Le−c C
p

i=1
Ft(x1,..., xi+1,..., xp)

+Rec C
p

i=1
Ft(x1,..., xi − 1,..., xp) − pFt(x1,..., xp) (3.2)

Ft(..., x, x,...)=(1 − m) ecFt(..., x − 1, x,...)

+me2cFt(..., x − 1, x − 1,...). (3.3)

The sum of the function Ft(C) over all configurations gives the gen-
erating function of moments of total distance Yt, whose behavior is deter-
mined by the largest eigenvalue L(c) of Eq. (3.2) for large t.

C
{C}

Ft(C)=OecYtP Ã eL(c) t. (3.4)

The derivatives of L(c) at c=0 give the cumulants of the distance Yt

lim
t Q .

OYtPc

t
=lim

t Q .

OYtP

t
=

“L(c)
“c

:
c=0

(3.5)

lim
t Q .

OY2
t Pc

t
=lim

t Q .

OY2
t P−OYtP

2

t
=

“
2L(c)
“c2

:
c=0

(3.6)

lim
t Q .

OY3
t Pc

t
=lim

t Q .

OY3
t P+2OYtP

3 − 3OY2
t POYtP

t
=

“
3L(c)
“c3

:
c=0

(3.7)
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The quantity of our main interest is the large deviation function

f(y)=lim
t Q .

1
t

ln Prob 1Yt

t
=y2 (3.8)

which characterizes deviations of the distance Yt from the average value
and can be expressed also trough the largest eigenvalue L(c):

f(y)=1L(c) − c
dL(c)

dc
2− cy (3.9)

y=
d
dc

L(c). (3.10)

Thus, we have to find the dependence of L(c) on the parameter c. The
master equation Eq. (3.2) and the boundary conditions Eq. (3.3) allow one
to use the Bethe ansatz in a usual form

Ft(x1,..., xp)=eLt C
s(1,..., p)

A(zs1
,..., zsp

) z−x1
s1

· · · z−xp
sp

, (3.11)

where the summation is over all permutations of (s1,..., sp). The eigenvalue
corresponding to eigenvalue Eq. (3.11) is

L(c)=R C
p

i=1
eczi+L C

p

i=1

1
eczi

− p. (3.12)

The parameters zi satisfy the Bethe equations

zN
k =(−1)p − 1 D

p

j=1

1 − (1 − m) eczk − me2czjzk

1 − (1 − m) eczj − me2czjzk
(3.13)

which follow from the substitution of Eq. (3.11) into Eq. (3.3) and the
periodic boundary conditions. The largest eigenvalue of the master equa-
tion corresponds to the stationary state of Markov process, so, one has to
choose the solution of Eqs. (3.13) which provides the eigenvalue of the
master equation for probability of Eq. (2.3) to be equal to zero

lim
c Q 0

L(c)=0. (3.14)

The Perron–Frobenius theorem ensures that this eigenvalue has no crossing
in the whole range of c.
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To solve the Bethe equations, it is convenient to transform the
variables zk. After the change of variables

zk=
1 − xk

1+mxk
e−c (3.15)

the system (3.13) can be rewritten in the following way

e−cN 1 1 − xk

1+mxk

2N

=( − 1)p − 1 D
p

j=1

xk+mxj

xj+mxk
(3.16)

Corresponding eigenvalue has the form

L(c)= C
p

k=1

1R
1 − xk

1+mxk
+L

1+mxk

1 − xk

2− p (3.17)

4. THE LIMIT m=0

In the limit m Q 0, the ASAP becomes a particular case of the two-
parameter family of exclusion processes discussed in ref. 15 which, in turn,
degenerates into the n=1 drop-push model (14) in the totally asymmetric
case L=0. In this case, particles perform the partially asymmetric random
walk with rates L and R. Going right, a particle jumps to the closest unoc-
cupied site at its right overtaking all adjacent particles next to it, whereas
the motion to left obeys the exclusion rule.

The simple form of the Bethe equations in this case allows one to use
the method proposed in ref. 11 to obtain a full solution of the problem. If
one introduces the parameter

B=( − 1)p − 1 e−cN D
p

j=1
xj (4.1)

the solution of Eqs. (3.16) will be given by the roots of the polynomial
equation

B(1 − x)N − xp=0. (4.2)

To get the largest eigenvalue, one has to choose p roots approaching zero
when c Q 0. Following ref. 11 one can use the Cauchy theorem to evaluate
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the sum over these roots integrating along the contour enclosing all the
roots in a small vicinity of zero.

C
p

j=1
f(xj)=

1
2pi

G dx f(x)
N

1 − x+
p
x

1 − B (1 − x)N

xp

. (4.3)

Inserting R(1 − x)+L/(1 − x) − 1 instead of f(x), we get the expression for
the eigenvalue in terms of series in powers of B

L(c)= C
.

k=1
Bk( − 1)kp Cpk − 1

Nk − 1
1 R

k(1 − r)+1/N
−

L(1 − r)
k − 1/N

2 (4.4)

where r=p/N and Cb
a=a!/(b!(a − b)!) is the binomial coefficient. On the

other hand, one can get the expression for c requiring <p
j=1 zj=1, which is

correct for the groundstate solution. Taking the logarithm of this product
and using Eq. (4.3) one gets

c=
1
p

C
.

k=1

Bk

k
( − 1)kp Cpk − 1

Nk − 1. (4.5)

Resolving two series of Eqs. (4.4), (4.5) and using Eqs. (3.5), (3.6), and
(3.7), we obtain the expressions for cumulants of the total distance traveled
by particles:

lim
t Q .

OYtPc

t
=Nr 1 R

(1 − r)+1/N
−

L(1 − r)
1 − 1/N

2 (4.6)

lim
t Q .

OY2
t Pc

t
=N

r2C2p − 1
2N − 1

[Cp − 1
N − 1]2

1 L(1 − r)
(1 − 1/N)(2 − 1/N)

+
R

((1 − r)+1/N)(2(1 − r)+1/N)
2 (4.7)

lim
t Q .

OY3
t Pc

t
=N2r 5− 3

[C2p − 1
2N − 1]2

[Cp − 1
N − 1]4

1 L(1 − r)
(1 − 1/N)(2 − 1/N)

+
R

((1 − r)+1/N)(2(1 − r)+1/N)
2

+4
C3p − 1

3N − 1

[Cp − 1
N − 1]3

1 L(1 − r)
(1 − 1/N)(3 − 1/N)

+
R

((1 − r)+1/N)(3(1 − r)+1/N)
26 (4.8)
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The scaling limit, N Q ., of these expressions is of interest for us because
it provides information about the large scale behavior independent of the
details of microscopic dynamics. While the ASEP keeps the same universal
behavior for any value of r, scaling properties of the ASAP may change
depending on how close to critical point the system is. In the case m=0, the
critical density corresponds to full occupation of the lattice, rc=1. In the
subcritical regime which corresponds to

(1 − r) ± 1/N (4.9)

the situation is similar to the ASEP. In the subcritical region, the generat-
ing function, L(c), takes the universal scaling form, Eq. (1.1) which has
been already obtained for the ASEP and claimed to be universal for all
models of KPZ universality class. (11, 30) Three model-dependent constants
K1, K2, K3 in Eq. (1.1) are

K1=Nr 1 R
(1 − r)

− L(1 − r)2 , (4.10a)

K2=N−3/2 = r

2p(1 − r)
1 R

(1 − r)2+L(1 − r)2 , (4.10b)

K3=N3/2
`2p(1 − r) r. (4.10c)

The average velocity of particles,

V.=
1
p

lim
t Q .

OYtPc

t
4

R
(1 − r)

− L(1 − r), (4.11)

and the other cumulants of the distance travelled by particles become
divergent in the thermodynamic limit when r approaches 1. However, the
physical quantities characterizing the finite system should obviously be
finite. As an example, one can consider simultaneous limit r Q 1, N Q ..
Substituting, for instance, N−J, (0 < J < 1) instead of (1 − r) into
Eqs. (4.10), (4.11) one gets the expressions for cumulants of Yt which
remain finite for finite N. The velocity of particles in this case, V. ’ NJ,
becomes explicitly dependent on N. Being finite for finite N, it is divergent
when N tends to infinity. The upper limit for the exponent J, given by
Eq. (4.9), is due to the term 1/N in Eq. (4.4). This term plays the role of
‘‘infrared cutoff ’’ at the scale N, which ensures V. to remain of order N if
(1 − r) becomes zero. When (1 − r) becomes of order of 1/N, the generat-
ing function, L(c), looses its universal structure, Eq. (1.1). Practically, this
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means that the presence of characteristic length N breaks the scale
invariance specific for the KPZ dynamics:

N Q lN, K1 −> lK1, K2 −> l−3/2K2, K3 −> l3/2K3,

which is held in the subcritical region, Eq. (4.9). The character of particle
motion near the critical line becomes strongly collective. Eventually, in the
limit N=p, the process is equivalent to totally asymmetric diffusion of a
single particle, with the distance, Yt, and time, t, rescaled as follows

Yt Q YtN, t Q tRN.

Although the solution for m=0 allows one to approach the vicinity of
critical line, it seems to be very specific as it does not, in fact, involve the
avalanche dynamics. However, as we will see below, it catches the basic
universal scaling properties of the subcritical dynamics of the model for
arbitrary m.

5. THE CASE OF ARBITRARY m<1

In the case of arbitrary m, the Bethe equations Eq. (3.16) cannot be
reduced to a polynomial equation. Nevertheless, they still can be solved
in the limit N Q ., p Q ., r=p/N=const. Let us consider the equation
obtained by taking the logarithm of both parts of Eq. (3.16)

p0(xk) −
1
N

C
p

j=1
G(xj/xk) − c=2piZ(xk) (5.1)

G(y/x)=ln x − ln y+ln
1+my/x
1+mx/y

p0=ln 1 1 − xk

1+mxk

2
(5.2)

We define G(y/x) at the complex plane of variable y with branch cuts
shown in Fig. 2. For small positive c, the solution corresponding to the
largest eigenvalue was shown in ref. 30 to behave as

xk ’ re2pi k
p, r ’ c1/p, c Q 0 (5.3)

The radius r behaves nonanalyticallywhen c approaches zero, so in the limit
p Q ., radius r becomes finite no matter how c is close to zero. It can be
easily verified that this is also correct for non-zero m at least in the limit
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0

- x-µx

-x/ -x/ µ

x0

x1

xp

x(p-1)/2

x
(p+1)/2 x p-1x p-1

Fig. 2. The analytical structure of the contour C. Zigzag lines show the branch cuts of the
function G(y/x) in the complex plane of the variable y. The broken segment of the contour
should be excluded from integration when c ] 0.

c=0. The analytical function Z(x) is fixed by the choice of logarithm
branches. The distribution of roots given by Eq. (5.3) corresponds to the
following choice:

Z(xj)=−
1
N
1 j −

p+1
2

2 . (5.4)

Then, assuming that the roots are at smooth contour at the complex plane,
the derivative of Z(x) with minus sign has a meaning of density of roots
along the contour

R(x)=−
“Z(x)

“x
. (5.5)

Instead of Eq. (5.1), we are going to solve the equation

p0(x) −
1
N

C
p

j=1
G(xj/x) − c=2piZ(x) (5.6)

together with Eqs. (5.4) and (5.5) under the assumption that the density of
roots is an analytical function of x. To solve these equations one need to
transform Eq. (5.6) to the integral form. This procedure is not straight-
forward and depends very much on properties of the function Z(x), which
should be first assumed and then can be checked a posteriori.

A simplest method is based on the replacement of the sum by the
integral along some contour in complex plane in the thermodynamic
limit. (35) The analytic solution then can be found for some special cases,
particularly for the case of the contour closed around zero. (36) It turns out
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to be the particular solution of our problem corresponding to single value
of c, c=0. A development of this idea is the expansion method proposed in
ref. 37 for the investigation of the conical point of ferroelectric six-vertex
model, which allows calculation of the leading term of the first cumulant
of Yt. (22) To obtaine higher cumulants one needs to calculate the finite size
corrections to the thermodynamic solution. This has been done for the
ASEP (33) with the help of the method of perturbative expansion of the
Bethe equations proposed by Kim. (32) For the ASAP we use the modifica-
tion of his approach, which allows us to calculate the finite size corrections,
avoiding some assumptions made in the original method. At least in the
leading orders the results do not depend on these assumptions and we
reproduce the results by Lee and Kim in the particular case m=−R/L.
To simplify the presentation we leave the details of the solution for the
Appendices (A–C), going directly to the results.

The solution of the Bethe equations results in the generating function
obtained in the scaling limit cN3/2=const

L(c)=cK1+K2G(cK3). (5.7)

Here G(x) in a parametric form is defined by the relations

G(x)= − Li5/2(−C), (5.8)

x=Li3/2(−C), (5.9)

and the function Lik(x) is the polylogarithm defined by series

Lik(x)= C
.

n=1

xn

nk (5.10)

when |x| < 1. For arbitrary negative x, the integral definition can be used:

Lik(x)=−
1

C(k)
F

.

0

sk − 1 ds
1 − x−1e s (5.11)

The equations, Eqs. (5.7)–(5.9), are nothing but Eqs. (1.1)–(1.3) and
K1, K2, K3 are model dependent parameters

K1=N(1+m) C
.

s=1

(L − R(−m) s − 1)
1 − ( − m) s

1 r

r − 1
2 s

s (5.12)

K2=N−3/2 1+m

`2p
C
.

s=1

(L − R(−m) s − 1)
1 − ( − m) s

1 r

r − 1
2 s s2(s − 1+2r)

((1 − r) r)3/2 (5.13)

K3=N3/2
`2p(1 − r) r. (5.14)
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The function G(x) has been already obtained for the ASEP (11) and
claimed to be universal for all models of KPZ universality class. (30) Simple
form of the eigenvalue (5.7) allows one to define a general expression for
the cumulants of the integrated particle current in scaling limit

lim
t Q .

OYtPc

t
=K1 − K2K3=p(VAV − VASEP) (5.15)

lim
t Q .

OYn
t Pc

t
=K2Kn

3G (n)(0)=C(n)
AV+C(n)

ASEP, n \ 2, (5.16)

where G (n)(0) is nth derivative of the function G(x) at x=0. Here we
divided the expressions for cumulants into two parts, which bring different
physical content. Particularly, VAV and VASEP,

VAV 4
Lm+R

(rc − r)2
5F0(r, rc) −

F1(r, rc)
N(rc − r)2

6 , (5.17)

VASEP 4 L(1+m)(1 − r)11+
1
N
2 , (5.18)

give the contributions to the average velocity coming from the avalanche
part of the dynamics and its ASEP-like part respectively. The critical
density, rc, is defined as follows

rc=
1

1+m
,

which gives the phase diagram shown in Fig. 3, and the functions F0(r, rc)
and F1(r, rc) are nonsingular below and at the critical point, r=rc, so
that the form of Eq. (5.17) explicitly shows critical singularities of the
average velocity. While VASEP gives the average velocity of the ASEP when
m=−R/L, VAV vanishes at the same time. This is also the case for higher
cumulants, which reproduce the results by Lee and Kim in this limit

C (n)
AV 4 N

3(n − 1)
2

Lm+R
(rc − r)4 (2pr(1 − r))

n − 1
2 rG (n)(0) F1(r, rc), (5.19)

C (n)
ASEP 4 L(1+m) N

3(n − 1)
2

(2pr(1 − r))
n+1

2

2p
G (n)(0). (5.20)

Thus, when the density of particles, r, approaches its critical value, rc, the
divergency of average velocity of particles is characterized by the power law

V ’ VAV ’ (rc − r)−a (5.21)
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Fig. 3. The phase diagram of the asymmetric avalanche process.

with the critical exponent a=2. In ref. 22 this exponent has been shown to
be nonuniversal with respect to the choice of different sets of dynamical
rules mn. The other cumulants diverge as 4th power of (r − rc). The
corrections to these laws are given in terms of the scaling variable,
N−1(r − rc)−2. The condition this variable is small defines the limits of
applicability of the perturbative scheme and bounds the subcritical region.

|r − rc | ± 1/`N.

Closer to the critical line, we expect that the scaling will change as it did in
the case m=0. In addition, the case with arbitrary m allows one to consider
the region of phase diagram above the critical line, where the average
velocity of particles will grow with N. This case requiring the modification
of finite size expansion scheme is not considered here.

To obtain the cumulants, one needs knowing only the behavior of
eigenvalue in the vicinity of the point c=0. At the same time, for the large
deviation function, the whole range of c is relevant. The solution con-
sidered above is valid for small negative c. However, the definition of G(x),
Eqs. (5.8) and (5.9), maintains analyticity in the region |C| < 1. This implies

Li3/2(−1) < cK3 < Li3/2(1). (5.22)

The Asymmetric Avalanche Process 1167



Beyond this domain one has to consider the solutions with different choice
of the function Z(x). Instead, we can directly use the analytical continua-
tion of G(x) proposed in ref. 11. To probe the whole range of negative c,
one can use the definition, Eqs. (5.8) and (5.9), where the functions
Li3/2(C), Li5/2(C) are defined in the integral representation Eq. (5.11). For
positive c outside of the domain Eq. (5.22), we use the following expression

G(x)=8
3 `p [− ln(−C)]3/2 − Li5/2(−C) (5.23)

x=4 `p [− ln(−C)]1/2+Li3/2(−C), (5.24)

where 0 < C < − 1. Finally, using the definitions of G(x) in different
domains of c, we get the large deviation function in the scaling limit

f(y)=K3H 1y − K1

K2K3

2 (5.25)

where the universal function H(x) is given by the following parametric
expression

H(x)=G(b) − bG −(b) (5.26)

x=G −(b). (5.27)

In ref. 11 this function has been shown to be skew, i.e., to have different
asymptotic behavior for its argument taking on a large negative or positive
value. This is so for the ASEP, since the speeding up and slowing down are
not equivalent due to the exclusion interaction. Specifically, it is much
easier to slow down process by stopping or moving backward a single par-
ticle than to speed it up by moving forward all particles simultaneously.
Similar qualitative interpretation of this asymmetry for the ASAP is also
possible. One can see from the explicit form of Eqs. (5.15)–(5.18), that the
leading terms of contributions to average velocity coming from the ASEP
and avalanche parts of dynamics have different signs, the positive term
corresponding to avalanches and the negative being for the ASEP drift.
This is why the universal function G(x) and subsequently H(x) are differ-
ent from it’s standard ASEP form in the minus sign before its arguments,
Eqs. (1.2) and (1.3) (compare with Eqs. (20) and (21) from ref. 11). Thus, in
our case the speeding up and slowing down are interchanged comparing to
the ASEP. Indeed, to initiate an avalanche one particle should move faster
or slower then the others to reach eventually an occupied site. To prevent
an avalanche all particles should move simultaneously in the same direc-
tion. The latter has much less probability then the former. However, com-
paring to the ASEP the situation is even more peculiar. The solution of the
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ASEP is usually holds in the domain with definite direction of the drift, for
example L < R. The opposite direction can be obtained by formal coordi-
nate inversion x Q− x that is equivalent to L Y R. The solution of the
ASAP holds for all values of L < 1 limited only by the condition |m| < 1.
Thus, for small densities, r, and the rate of the left driving, L, close to 1 the
situation may take place when VASEP > VAV, so that the resulting average
velocity will be negative. This, however, does not affect the function H(x)
as its skewness is related only to the avalanche direction rather than to the
Poissonian drift. At the same time full inversion transformation in the
ASAP corresponds to simultaneous transformations L Y R and m Q 1/m,
which changes the direction of avalanches as well as that of Poissonian
drift. At the same time, if one considers the fluctuations of the particle flow
in the reference frame attached to the average flow of particles the macro-
scopic fluctuations are quite similar to the ASEP up to change of the dis-
tance scale

(Yt −OYtP)ASEP

(Yt −OYtP)ASAP

Q L(1+m)51+
m+R/L

m
C
.

s=1

1 r

r − 1
2 s ( − m) s

1 − ( − m) s

s2(s − 1+2r)
2((1 − r) r)2

6 . (5.28)

6. SUMMARY AND DISCUSSION

To conclude, we have considered the asymmetric avalanche process on
the ring. To introduce the avalanche dynamics to the master equation for
the Poissonian process, we used the technique of the recurrent boundary
conditions. We have solved the master equation by the Bethe ansatz and
studied the solution corresponding to the stationary state. As a result, we
have calculated the cumulants of the integral particle current, exactly in the
case m=0 and in the scaling limit for general m. The large deviation func-
tion has been obtained, which has the structure, typical for models belong-
ing to KPZ universality class. To calculate the finite size corrections, we
used the modification of the perturbative scheme proposed by Kim in
ref. 32. While in the leading orders the standard and modified approaches
give the same results, it would be interesting to find out if this is so in arbi-
trary orders. Our investigation is valid for the densities below the critical
point. However the model at the finite lattice can be considered for an
arbitrary density of particles. One may expect that the scaling behavior of
physical quantities should change above the critical point. The question of
interest is how to modify the scheme to study the behavior of the model at
the critical line and above.
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APPENDIX A. SOLUTION OF THE BETHE EQUATIONS

First, we suppose that the roots of the Bethe equation are placed along
the closed contour C encircling zero, and the solution still preserves the
invariance with respect to complex conjugation like the solution corre-
sponding to c Q 0, Eq. (5.3). If we suppose also that the monovalued ana-
lytical function Z−1( p+1

2N − j
N) can be defined everywhere at this contour, we

obtain the mapping j Q xj, which allow us to use the Euler–Maclaurin
summation formula for transformation of the sum over the roots of Bethe
equations into an integral along the segment 0 < j < p in the plane j with a
correction term. The integral along the segment can be mapped into the
integral along contour C in the plane x (see Appendix B)

C
p

j=1
f(xj) Q F

p

1
f(Z−1(j)) dj+f.s.c. Q G f(x) R(x) dx+f.s.c. (A.1)

where f.s.c. is the correction term.
The functions of interest, e.g., the function G(y/x) can be represented

on C as power series with additional logarithmic terms. In this case, the
only correction term appears which corresponds to a contribution origi-
nating from the logarithm branch cut. As a result, the equation Eq. (5.6)
simplifies to the following form

p0(x) − G
C

G(y/x) R(y) dy − c=ipr − 2pi F
x

x0

R(x) dx. (A.2)

The reference point x0 is the cross point of the contour with the positive
part of the real axis, which can be defined as xpe−2pi. The equation
Eq. (A.2) coincides with that obtained in ref. 22 in the limit of infinite
lattice after replacing the sum by the integral and neglecting the finite size
corrections. It turns out that the solution of Eq. (A.2) gives the exact solu-
tion of Bethe equations, provided that the inverse function Z−1( p+1

2N − j
N) is

an analytical function in the segment 1 < j < p, what should be checked
afterwards from the solution obtained.

The only analytical solution of Eq. (A.2) corresponds to the case c=0.
Taking into account the normalization

G R(x) dx=r. (A.3)

we get the solution

R0(x)=
1

2pi
1r

x
+

1
1 − x

2 . (A.4)
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According to Eq. (5.5) the function Z(x) corresponding to this solution,
can be obtained by the integrating of the density R(x):

Z0(x)=
(p+1)

2N
−

1
2pi

1r ln
x
x0

− ln
1 − x
1 − x0

2

Using the definition of Z(x), Eq. (5.4), we obtain the equation for the roots
xj of the Bethe equations.

j=
N

2pi
1r ln

xj

x0
− ln

1 − xj

1 − x0

2 (A.5)

Considering j as a continuous parameter varying from 0 to p, Eq. (A.5) can
be treated as an implicit definition of the contour C. It is easy to check that
Eq. (A.5) has a solution corresponding to a closed contour around zero
when x0 varies in the interval 0 [ x0 [ xr. The upper point xr, defined by
the equation xr

r − (1 − xr) rr(1 − r)1 − r=0, is a monotonous function of r

changing in the range 0 [ xr [ 1/2 when r changes from 0 to 1. Every
value of x0 less then xr corresponds to the particular position of the
contour C passing through x0. As it was shown above, in the case of finite
p and c=0, all the roots are collapsed into one point x=0. This situation
is realized when x0=0. The nonzero values of x0 correspond to two limits
c Q 0, p Q . taken simultaneously. One can see from the Eq. (5.3) that if
we put c ’ fp, (1 < f < 0), the value of x0 takes different limits when
p Q . depending on f. At last, the case x0=xr is realized when the decay
of c with growth of p is slower than exponential and particularly, when the
limit p Q . is taken for a fixed c and then c is put to zero. This case is of
special interest for us because it gives the zero order of the solution we are
looking for. When x0 > xr, the equation (A.5) has no solutions corre-
sponding to a closed contour encircling the zero point.

Whereas the dependence of xr on r is defined by the irrational equa-
tion Eq. (A.5), for x0=xr, the connection between r and the cross point of
C with the negative part of real axes, xc is much simpler

xc=
r

r − 1
. (A.6)

Importance of this point lies in vanishing of the root density R0(x) at xc:

R0(xc)=0 (A.7)

This fact is crucial for the Kim’s perturbative scheme. (32, 33) Practically, it
determines the range of applicability of Eq. (A.2). It has been noted above
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that Eq. (A.2) to be correct, the analytical function Z−1( p+1
2N − j

N) should be
defined to map the segment 0 [ j < p to contour C. It is possible only if the
first derivative Z −(x)=−R(x) differs from zero everywhere in a given
region. (39) According to Eq. (A.7), this is not the case at least at one point if
c ] 0. Thus, we cannot apply the above arguments to whole contour C. To
overcome this difficulty, we can separate C into two parts and apply the
summation formula to intervals where the requirements of analyticity are
satisfied. It seems natural that all troubles with analyticity are concentrated
around the point of crossing the contour with the negative part of the real
axis.

Consider the solution for odd p, and small positive c. Then, the two
roots closest to the negative part of the real axis, are conjugated to each
other and can be denoted by

x(p − 1)/2=xce−iE, x(p+1)/2=xce iE, (A.8)

where xc and E are unknown real parameters. We exclude a small part of
the contour C between x(p − 1)/2 and x(p+1)/2 and assume the analyticity of
Z−1( p+1

2N − j
N) at the segments 1 < j < (p − 1)/2 and (p+1)/2 < j < p. This

allows us to apply the Euler–Maclaurin formula for these segments sepa-
rately. However, points j=(p+1)/2 and j=(p − 1)/2 are located in the
vicinity of a point on the real axis where Z−1( p+1

2N − j
N) looses its analyticity.

Therefore, the higher the order of derivatives of Z−1( p+1
2N − j

N) at these
points, the more singular their behavior. Practically, this means that all
terms of the Euler–Maclaurin series have the same order in N. This is why
an alternative variant of the summation formula in the Abel–Plana form
has been applied in ref. 10. The Abel–Plana formula requires, however, the
analyticity of Z−1( p+1

2N − j
N) in the strips 1 < Re j < (p − 1)/2 and (p+1)/2

< Re j < p, which is assumed below.
Using the Abel–Plana formula, we can transform the sum over the

roots of Bethe equations into two integrals along the segments 1 < j <
(p − 1)/2 and (p+1)/2 < j < p with a finite size correction term f.s.c.
Then, these two integrals can be rewritten as the integral in the plane x
along the closed contour C minus the integral along the small segment
connecting the points x(p − 1)/2 and x(p+1)/2.

C
p

j=1
f(xj) Q F

(p − 1)/2

1
f(Z−1(j)) dj+F

p

(p+1)/2
f(Z−1(j)) dj+f.s.c.

a

G f(x) R(x) dx − F
x(p+1)/2

x(p − 1)/2

f(y) R(y) dy+f.s.c.
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To get the expression for the finite size correction term, we have to
know the behavior of the function Z−1(t) in the vicinity of points
t=0, 1/N. Once we know Z(x), the inverse function can be constructed
by inversion of its series at every point. However, the inverse function
Z−1(t) become singular at the points t=0, 1/N in the limit N Q .. This
should be taken into account in constructing its series.

Consider the Taylor series of Z(x) in points x=xce + iE:

Z(xce + iE+t)= C
.

n=0

z +

n

n!
tn

We can introduce new shifted variables y=t − s+ and consider the series
expansion in y.

Z(xce + iE − s+ +y)=z+

0 +d ++ C
.

n=1

b +

n

n!
yn, (A.9)

where

z−
0 =Z(xce−iE)=−

1
N

; z+
0 =Z(xce iE)=0;

d+ = C
.

n=1

z +

n

n!
sn

+ ; b +

n = C
.

k=n

z +

k sk − n
+

(k − n)!
.

Two signs + , marking all parameters here are to remind that we consider
two expansions around points x(p − 1)/2=xce−iE and x(p+1)/2=xce iE, and
generally the parameters z−

k , d−, b−
n , s− are different from z+

k , d+, b+
n , s+.

The shift of parameters s+ is defined by the condition

b +

1 =0 (A.10)

that determines the shift of the expansion to the point where the density
R(x) is zero. Using the expansion (A.9), we can construct the inverse series

Z−1 1z +

0 +
t

N
2= C

.

n=0
an
1 1

iN
2

n
2 1± i =−

t

i
−

dN
i
2n

a0=xce + iE+s, a1== 2
b2

, a2=−
b3

3b2
2

,

a3=
1

18 `2
1 1

b2

2
7
2
(5b2

3 − 3b2b4),...

(A.11)
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Here, we omitted the indices + at variables a, b, s, d still implying two dif-
ferent expansions. To ensure the proper choice of a branch of the square
root in both expansions, one can check if Eq. (A.11) for t=0 is satisfied.
Finally, after some algebra (see Appendix C) we rewrite the Bethe equa-
tions in the following form:

Rs=
h(−s − 1)

2pi
−

1
p

( − m) |s|

1 − ( − m) |s|
3 1

4N
(y+x s

+ − y− x s
− )+Rs ln

x+

x−

+
1
2i

C
n ] s

Rn

s − n
(x s − n

+ − x s − n
− )+

1
4N

(y+x s
+ − y− x s

− )

+
1

4N
C
.

n=1

1 1
2iN

2
n
2 C( n

2+1)

p
n
2
+1

[c−
n, s(Li n

2
+1(−e−py − ) − in Li n

2
+1(−epy − ))

− c+
n, s(Li n

2
+1(−e−py+) − ( − i)n Li n

2
+1(−epy+))]4 (A.12)

if s ] 0 and

ER0=− C
.

s ] 0, s=−.

Rsx
−s
c

sin Es
s

+
1

2iN
(A.13)

otherwise. For c and r, we have respectively

c=
1

2Ni
C
.

n=1

1 1
2iN

2
n
2 C( n

2+1)

p
n
2
+1

[c̄−
n (Li n

2
+1(−e−py − ) − in Li n

2
+1(−epy − ))

− c̄+
n (Li n

2
+1(−e−py+) − ( − i)n Li n

2
+1(−epy+))]

+
i

2N
(y− ln x− − y+ ln x+)+

R0

2
(ln2 x− − ln2 x+)

+ C
n ] 0

Rs
1x−n

+ − x−n
−

n2 +
x−n

+ ln x+ − x−n
− ln x−

n
2 (A.14)

and

r=2piR0. (A.15)

Here we introduced notations y+ , x+ , c +

n, s which are defined as follows

d +=−
i

2N
(+ i+y+ ); x+ =xce + iE+s + (A.16)

5 C
.

n=0
a +

n xn6 s

= C
.

n=0
c +

n, sx
n; ln 1 C

.

n=0
a +

n xn2= C
.

n=0
c̄ +

n xn, (A.17)
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and Rs are the expansion coefficients of Laurent series

R(x)= C
.

s=−.

Rs

x s+1 . (A.18)

Using Eqs. (3.17), (B.7) together with Eqs. (C.1)–(C.4) we obtain the
expression of eigenvalue in terms of Rs

L(c)=2piN C
.

n=1
( − m)−n LnRn, (A.19)

where

Ln=(L − R(−m)n − 1)(1+m)

While the equations Eqs. (A.12)–(A.15) look rather cumbersome, a signifi-
cant simplification takes place if the following conditions are satisfied:

y+=y− =y; (A.20a)

x+=x− =x̃; (A.20b)

a−
s =a+

s =as. (A.20c)

Then, instead of Eqs. (A.12), (A.14), we get

Rs=
h(−s − 1)

2pi
−

1
2pi

( − m) |s|

1 − ( − m) |s|

×
1

N3/2 C
.

n=0

1 i
2N

2n C(n+3
2)

pn+3
2

c2n+1, s

`2i
Lin+3

2
(−epy)

c= −
1

N3/2 C
.

n=0

1 i
2N

2n C(n+3
2)

pn+3
2

c̄2n+1

`2i
Lin+3

2
(−epy),

(A.21)

which together with Eq. (A.19) reproduces the results of paper. (32) The
conditions of Eqs. (A.20a) and (A.20b) are those accepted in ref. 32 as
assumptions. Equation (A.20a) is equivalent to equality d+=d− (see
Eq. (32) in ref. 32). Equation (A.20b) is equivalent to the assumption that
there is only one point x̃ where Z −(x̃)=0 which is used as the expansion
center in ref. 32. In our consideration, two complex conjugated points,
x+ and x− , are possible that merge into one point x̃ in the limit p Q .. The
third equality Eq. (A.20c) is a direct consequence of first two. Generally,
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there are no obvious reasons for Eqs. (A.20a) and (A.20b) to be satis-
fied.They can be checked a posteriori when the solution of Eqs. (A.12) and
(A.14) is obtained. We checked them in first orders of the perturbative
solution and found that they are correct in the first three orders which are
necessary to reproduce the results of ref. 33.

To obtain the solution of the Eqs. (A.12)–(A.15) which is consistent
with the exact solution in the case m=0, one has to assume E to behave as
E ’ N−1/2 when N Q .. Therefore, we assume the following expansion

E= C
.

k=1

Ei

N
k
2

. (A.22)

The other values in the Eqs. (A.12)–(A.15) can be represented as similar
expansions

Rs= C
.

k=0

R (k)
s

N
k
2

, r= C
.

k=0

ri

N
k
2

, c= C
.

k=3

c i

N
k
2

. (A.23)

Equation (A.4) is used as a zero order solution. Then Eqs. (A.12)–(A.15)
should be solved order by order in powers of N−1/2. The scaling depen-
dence of c corresponds to cN3/2=const. The limit c Q 0 corresponds to the
limit E1 Q 0. The other parameters E2, E3,... depend on the way, how c

approaches zero when N Q .. However, the physical results do not
depend on these parameters due to analyticity of eigenvalue. Solving
Eqs. (A.12)–(A.15) in first four orders, we get the expression for eigenvalue
given in Eqs. (5.7)–(5.9)

APPENDIX B. EVALUATION OF SUMS OVER ROOTS OF THE

BETHE EQUATIONS

To evaluate the sum over roots of the Bethe equation, one can use the
asymptotic formula approximating the sum by the integrals

C
m

i=n
f(j)=F

m

n
f(j) dj+corr(f, n, m) (B.1)

with the correction term given by the asymptotic Euler–Maclaurin series

corr(f, n, m)=
1
2

(f(m)+f(n))+ C
.

i=2

Bi

i!
(f (i − 1)(m) − f (i − 1)(n)) (B.2)
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or by the Abel–Plana integral form

corr(f, n, m)=
1
2

(f(m)+f(n)) (B.3)

+
1
i

F
.

0

f(m+it) − f(m − it) − f(n+it)+f(n− it)
e2pt − 1

dt.
(B.4)

The former requires the analyticity of the function f(j) at the segment of
real axes j ¥ [n, m] and the latter at the strip of complex plane, Re x ¥

[n, m]. Let us suppose, that the analytical structure of the function Z(x)
allows one to define the analytical inverse function Z−1( p+1

2N − j
N) that maps

the segment j ¥ [0, p] into the closed contour C encircling zero in the plane
of the variable x. Then the derivatives with respect to j can be expressed in
terms of xj as follows

“

“j
f(j) Q−

1
NR(xj)

f − 1 − Z(xj) N+
p+1

2
2 . (B.5)

We are interested in calculation of sums of the form

1
N

C
p

j=1
F(xj), (B.6)

where F(x) can be represented at the contour C as Laurent series with
additional logarithmic term

F(x)=Fa ln x+ C
.

s=−.

Fsx s. (B.7)

The root xp lies at the real part of positive axes. We can introduce its
‘‘twin’’ at the other side of logarithm branch cut, x0=e−2pixp, which corre-
sponds to j=0. Then, application of Euler–Maclaurin formula Eq. (B.2)
gives

1
N

C
p

j=1
F(xj)=

1
N
1 C

p

j=0
F(xj) − F(x0)2=G

C

F(y) R(y) dy+
pi
N

Fa (B.8)

Indeed, all derivatives in the Euler–Maclaurin series Eq. (B.2) taken at the
points x0 and xp, being equal, are cancelled by each other. The only con-
tribution to correction term comes from difference between imaginary parts
of the logarithm at the banks of its branch cut. As it is shown in Section 5,
this case is limited by c=0.
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Let us consider the case when the roots x(p − 1)/2 and x(p+1)/1 are located
in the vicinity of the point xc satisfying Eq. (A.7), and, therefore, we can
not guarantee existence of an analytical function Z−1( p+1

2N − j
N) that maps

the segment j ¥ [0, p] to closed contour C. We, however, still assume, that
the mapping like this exists at two its segments, which connect points
x0, x(p − 1)/2 and x(p+1)/1, xp. One can see from Eq. (B.5), that every deriva-
tive with respect to j brings the competitive coefficients 1/N and 1/R(xj),
i.e., when N tends to infinity R(x(p ± 1)/1) goes to zero. This is why we use
Abel–Plana summation formula Eq. (B.3) instead of Eq. (B.2) to take into
account all contributions of the same order in N. Applying it to each of
two segments separately and using formula Eq. (A.8) for the roots x(p − 1)/2

and x(p+1)/1 we obtain

1
N

C
p

j=1
F(xj)= C

.

s=−.

Rs(I0
s +IE

s )+
pi
N

Fa

+Fa 1 ln xc

N
+x̄2+ C

.

s=−.

Fs
1x s

c cos Es
N

+
xs

N
2 (B.9)

where

I0
s =2pi ˛Fs −

Fa

sx s
0

s ] 0

F0+Fa(ln x0+ip) s=0,
(B.10)

IE
s =− 2iE ˛Fs+ C

.

n ] s, n=−.

Fn
xn − s

c sin(n − s) E

E(n − s)

+
Fa

sx s
c

11 ln xc+
1
s
2 sin Es

E
− cos Es2 s ] 0

F0+ C
.

n ] 0, n=−.

Fn
xn

c sin nE

En
+Fa ln xc s=0,

(B.11)

xs=
1
i

F
.

0

35Z−1 1−
1+it

N
26 s

−5Z−1 1−
1 − it

N
26 s

−5Z−1 1−
it
N
26 s

+5Z−1 1 it
N
26 s4;(e2pt − 1) dt, (B.12)

x̄=
1
i

F
.

0

3 ln Z−1 1−
1+it

N
2− ln Z−1 1−

1 − it
N

2

− ln Z−1 1−
it
N
2+ln Z−1 1 it

N
24;(e2pt − 1) dt (B.13)
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and Rs are the coefficients of the Laurent expansion of the density defined
in Eq. (A.18).

APPENDIX C. DERIVATION OF EQUATIONS FOR Rs

Rewriting the sum in the Eq. (5.6) with the help of Eq. (B.9) and
collecting coefficient of the same powers of x we get

s ] 0: Rs=
h(−s − 1)

2pi
−

1
p

( − m) |s|

1 − ( − m) |s|

×1ERs+ C
.

n ] s, n=−.

x s − n
c

s − n
sin E(s − n) Rn −

x s
c

2iN
cos Es −

xs

2iN
2

(C.1)

s=0: ER0=− C
.

s ] 0, s=−.

Rsx
−s
c

sin Es
s

+
1

2iN
(C.2)

c=2i C
.

s ] 0, s=−.

x−s
c

s
1E cos Es −

sin Es
s

2 Rs+
x̄

N
(C.3)

r=2piR0 (C.4)

where we use the function G(y/x), treated as a function of the variable y,
as the expansion valid at the contour C with coefficients defined like in
Eq. (B.7)

Gn=˛ ( − m) |s|

sx s s ] 0

ln x s=0
; Ḡ=−1.

To go further one needs to obtain the explicit expressions for xs, x̄ in terms
of Rs. Using the expansion of Z−1(z +

0 + t

N), Eq. (A.11), we get

xs=
1
2

C
.

n=1

1 1
2iN

2
n
2
[c−

n, sY
−
n − c+

n, sY
+
n ] (C.5)

x̄=
1
2

C
.

n=1

1 1
2iN

2
n
2
[Y−

n c̄−
n − Y+

n c̄+
n ], (C.6)
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where the coefficients c̄ +

n and c +

n, s are defined in Eq. (A.17) an the functions
Y +

n are given by

Y +

n =
1
i

F
.

0

[(± i ` − t+y+ − i)n − (± i `t+y+ − i)n]

ept − 1
dt (C.7)

The method of evaluation of these integrals is described in detail in ref. 33.
Finally, for Y +

n we get

Y +

n =
1
i
3(+ i −

y+ + i
n
2+1

2(± i `y+ + i)n

+
C( n

2+1)

p
n
2
+1

(Lin
2
+1(−e−py

+) − (± i)n Li n
2
+1(−epy

+))4 . (C.8)

Using the equalities

C
.

n=1
c +

n, s(± i `y+ − i)n 1 1
2iN

2
n
2
=[Z−1(z +

0 )] s − c +

0, s, (C.9)

C
.

n=1
c̄ +

n (± i `y+ − i)n 1 1
2iN

2
n
2
=ln[Z−1(z +

0 )] − c̄ +

0 , (C.10)

C
.

n=1
c +

n, s(± i `y+ − i)n 1 1
2iN

2
n
2 y+ + i

n
2+1

=d +Nc +

0, s+N F
Z − 1(z +

0 )

c +

0, s

x sR(x) dx,
(C.11)

C
.

n=1
c̄ +

n (± i `y+ − i)n 1 1
2iN

2
n
2 y+ + i

n
2+1

=Nd +c̄ +

0 +N F
Z − 1(z +

0 )

c +

0, s

ln xR(x) dx,
(C.12)

Z−1(z +

0 )=xce + iE; c +

0, s=x s
+ ; (C.13)

and Eqs. (A.16) we come to the system of equations for Rs,
Eqs. (A.12)–(A.14).
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